首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2149篇
  免费   114篇
  国内免费   130篇
  2023年   6篇
  2022年   8篇
  2021年   19篇
  2020年   21篇
  2019年   30篇
  2018年   36篇
  2017年   30篇
  2016年   42篇
  2015年   49篇
  2014年   132篇
  2013年   193篇
  2012年   118篇
  2011年   84篇
  2010年   83篇
  2009年   115篇
  2008年   128篇
  2007年   123篇
  2006年   122篇
  2005年   103篇
  2004年   93篇
  2003年   74篇
  2002年   75篇
  2001年   62篇
  2000年   45篇
  1999年   65篇
  1998年   47篇
  1997年   33篇
  1996年   45篇
  1995年   61篇
  1994年   48篇
  1993年   53篇
  1992年   33篇
  1991年   38篇
  1990年   28篇
  1989年   23篇
  1988年   21篇
  1987年   14篇
  1986年   13篇
  1985年   13篇
  1984年   16篇
  1983年   14篇
  1982年   16篇
  1981年   7篇
  1980年   1篇
  1979年   7篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有2393条查询结果,搜索用时 126 毫秒
1.
RFLPs were studied in 13Juglans species to determine phylogenetic relationships inJuglans. Allele frequency data were used to generate genetic distance matrices and fragment data were used to generate genetic distances based upon shared-fragments and to perform parsimony analysis. Although similar cluster analyses result from analysing allelic and shared-fragment distance, the two types of distance values displayed variable correspondence with each other. Parsimony analysis produced a tree similar to distance data trees, but with additional phylogenetic resolution agreeing with previous systematic studies. All analyses indicate an ancient origin ofJ. regia, previously considered a recently derived species.  相似文献   
2.
3.
Summary Using restriction enzyme digests of genomic DNA extracted from the leaves of 25 hexaploid wheat (Triticum aestivum L. em. Thell.) cultivars and their hybrids, restriction fragment length polymorphisms of the spacer DNA which separates the ribosomal-RNA genes have been examined. (From one to three thousand of these genes are borne on chromosomes 1B and 6B of hexaploid wheat). The data show that there are three distinct alleles of the 1B locus, designated Nor-B1a, Nor-B1b, and Nor-B1c, and at least five allelic variants of the 6B locus, designated Nor-B2a, Nor-B2b, Nor-B2c, Nor-B2d, and Nor-B2e. A further, previously reported allele on 6B has been named Nor-B2f. Chromosome 5D has only one allelic variant, Nor-D3. Whereas the major spacer variants of the 1B alleles apparently differ by the loss or gain of one or two of the 133 bp sub-repeat units within the spacer DNA, the 6B allelic variants show major differences in their compositions and lengths. This may be related to the greater number of rDNA repeat units at this locus. The practical implications of these differences and their application to wheat breeding are discussed.  相似文献   
4.
5.
The goal of this study was to identify pig chromosomal regions associated with susceptibility to salmonellosis. Genomic DNA from pig reference populations with differences in susceptibility to Salmonella enterica serovar Choleraesuis as quantified by spleen and liver bacterial colonization at day 7 post-infection (dpi; Van Diemen et al. 2002 ) was used. These samples belonged to the offspring of a sire thought to be heterozygous for genes involved in susceptibility to salmonellosis. Amplified fragment length polymorphism (AFLP) markers were created and used to determine associations with spleen or bacterial counts at 7 dpi. To position linked markers, two mapping populations, the Roslin and Uppsala PiGMaP pedigrees were used to create an integrated map which included the AFLP markers associated with salmonellosis. Twenty-six AFLP markers located in 14 different chromosomal regions in the porcine genome were found to be significantly associated with susceptibility (Chi-square P  < 0.05). More than one linked marker was found on chromosomes 1, 7, 13, 14 and 18. It is likely that these regions contain genes involved in Salmonella susceptibility. Regions on chromosomes 1, 7 and 14 were significantly associated with Salmonella counts in the liver and regions on chromosomes 11, 13 and 18 with counts in spleen. The identification of these chromosomal regions highlights specific areas to search for candidate genes that may be involved in innate or adaptive immunity. Further investigation into these chromosomal regions would be useful to improve our understanding of host responses to infection with this widespread pathogen.  相似文献   
6.
L. Zhang  G. Yang  S. Guo  Q. Wei  G. Zou 《Animal genetics》2010,41(5):523-530
For silver carp (Hypophthalmichthys molitrix), a combined microsatellite (or simple sequence repeat) and amplified fragment length polymorphism (AFLP) sex average linkage map was constructed. A total of 483 markers (245 microsatellites and 238 AFLPs) were assigned to 33 linkage groups. The map spanned 1352.2 cM, covering 86.4% of the estimated genome size of silver carp. The maximum and average spaces between 420 loci were 21.5 cM and 3.2 cM, respectively. The length of linkage groups ranged from 3.6 cM to 98.5 cM with an average of 41.0 cM. The number of markers per group varied from 2 to 44 with an average of 14.6. The AFLP markers significantly improved the integrity of microsatellite-based linkage groups and increased the genome coverage and marker evenness. A genome-wide recombination suppression was observed in male. In an extreme case, six microsatellites co-segregated in male, but spanned a 45.1 cM region in female.  相似文献   
7.
Dengue is a major public health concern in tropical and subtropical countries of the world. There are no specific drugs available to treat dengue. Even though several candidates targeted both viral and host proteins to overcome dengue infection, they have not yet entered into the later stages of clinical trials. In order to design a drug for dengue fever, newly emerged fragment-based drug designing technique was applied. RNA-dependent RNA polymerase, which is essential for dengue viral replication is chosen as a drug target for dengue drug discovery. A cascade of methods, fragment screening, fragment growing, and fragment linking revealed the compound [2-(4-carbamoylpiperidin-1-yl)-2-oxoethyl]8-(1,3-benzothiazol-2-yl)naphthalene-1-carboxylate as a potent dengue viral polymerase inhibitor. Both strain energy and binding free energy calculations predicted that this could be a better inhibitor than the existing ones. Molecular dynamics simulation studies showed that the dengue polymerase–lead complex is stable and their interactions are consistent throughout the simulation. The hydrogen-bonded interactions formed by the residues Arg792, Thr794, Ser796, and Asn405 are the primary contributors for the stability and the rigidity of the polymerase–lead complex. This might keep the polymerase in closed conformation and thus inhibits viral replication. Hence, this might be a promising lead molecule for dengue drug designing. Further optimization of this lead molecule would result in a potent drug for dengue.  相似文献   
8.
9.
The pig is an important animal for both agricultural and medical purposes. However, the number of pig-derived cell lines is relatively limited when compared with mouse- and human-derived lines. We established in this study a retroviral conditional expression system for the Simian vacuolating virus 40 large T fragment (SV40T) which allowed us to efficiently establish pig embryonic fibroblast cell lines. The established cell lines showed high levels of cell proliferation and resistance to cellular senescence. A chromosome analysis showed that 84% of the cells had the normal karyotype. Transient expression of the Cre recombinase allowed us to excise the SV40T fragment from the genome. The development of this research tool will enable us to quickly establish new cell lines derived from various animals.  相似文献   
10.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号